NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1160595246|ref|NP_001336466|]
View 

PX domain-containing protein kinase-like protein isoform ss [Homo sapiens]

Protein Classification

protein kinase family protein( domain architecture ID 229378)

protein kinase family protein may catalyze the transfer of the gamma-phosphoryl group from ATP to substrates such as serine/threonine and/or tyrosine residues on proteins, or may be a pseudokinase

CATH:  1.10.510.10
PubMed:  16244704
SCOP:  4003661

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PKc_like super family cl21453
Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the ...
61-208 1.30e-09

Protein Kinases, catalytic domain; The protein kinase superfamily is mainly composed of the catalytic domains of serine/threonine-specific and tyrosine-specific protein kinases. It also includes RIO kinases, which are atypical serine protein kinases, aminoglycoside phosphotransferases, and choline kinases. These proteins catalyze the transfer of the gamma-phosphoryl group from ATP to hydroxyl groups in specific substrates such as serine, threonine, or tyrosine residues of proteins.


The actual alignment was detected with superfamily member cd00180:

Pssm-ID: 473864 [Multi-domain]  Cd Length: 215  Bit Score: 57.67  E-value: 1.30e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYIYRVTFATANESSALLIRMFNEKGTLKDLIYKakpkdpflkkycnpkKIQGLELQQIKTYGRQILEVLK 140
Cdd:cd00180    42 IEILKKLNHPNIVKLYDVFETENFLYLVMEYCEGGSLKDLLKE---------------NKGPLSEEEALSILRQLLSALE 106
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 141 FLHDKGFPYGHLHASNVMLDGD---------TCRLLDLENSLLGLPSFYRSYF----SQFRKINTLESVDVHCFGHLLYE 207
Cdd:cd00180   107 YLHSNGIIHRDLKPENILLDSDgtvkladfgLAKDLDSDDSLLKTTGGTTPPYyappELLGGRYYGPKVDIWSLGVILYE 186

                  .
gi 1160595246 208 M 208
Cdd:cd00180   187 L 187
 
Name Accession Description Interval E-value
PKc cd00180
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ...
61-208 1.30e-09

Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase.


Pssm-ID: 270622 [Multi-domain]  Cd Length: 215  Bit Score: 57.67  E-value: 1.30e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYIYRVTFATANESSALLIRMFNEKGTLKDLIYKakpkdpflkkycnpkKIQGLELQQIKTYGRQILEVLK 140
Cdd:cd00180    42 IEILKKLNHPNIVKLYDVFETENFLYLVMEYCEGGSLKDLLKE---------------NKGPLSEEEALSILRQLLSALE 106
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 141 FLHDKGFPYGHLHASNVMLDGD---------TCRLLDLENSLLGLPSFYRSYF----SQFRKINTLESVDVHCFGHLLYE 207
Cdd:cd00180   107 YLHSNGIIHRDLKPENILLDSDgtvkladfgLAKDLDSDDSLLKTTGGTTPPYyappELLGGRYYGPKVDIWSLGVILYE 186

                  .
gi 1160595246 208 M 208
Cdd:cd00180   187 L 187
SPS1 COG0515
Serine/threonine protein kinase [Signal transduction mechanisms];
123-232 2.06e-07

Serine/threonine protein kinase [Signal transduction mechanisms];


Pssm-ID: 440281 [Multi-domain]  Cd Length: 482  Bit Score: 52.71  E-value: 2.06e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 123 LELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLDGD-TCRLLDL-------------ENSLLGLPsfyrSYFS--Q 186
Cdd:COG0515   104 LPPAEALRILAQLAEALAAAHAAGIVHRDIKPANILLTPDgRVKLIDFgiaralggatltqTGTVVGTP----GYMApeQ 179
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 1160595246 187 FRKINTLESVDVHCFGHLLYEMTYGRPPdsvpvdsFPPAPSMAVVA 232
Cdd:COG0515   180 ARGEPVDPRSDVYSLGVTLYELLTGRPP-------FDGDSPAELLR 218
S_TKc smart00220
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ...
61-214 9.91e-06

Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily.


Pssm-ID: 214567 [Multi-domain]  Cd Length: 254  Bit Score: 46.37  E-value: 9.91e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246   61 IKLLPSCLHPYIYRVTFATANESSALLIrM-FNEKGTLKDLIYKAKPkdpflkkycnpkkiqgLELQQIKTYGRQILEVL 139
Cdd:smart00220  48 IKILKKLKHPNIVRLYDVFEDEDKLYLV-MeYCEGGDLFDLLKKRGR----------------LSEDEARFYLRQILSAL 110
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  140 KFLHDKGFPYGHLHASNVMLDGD-TCRLLDLENS-LLGLPSFYRSYFS----------QFRKINTleSVDVHCFGHLLYE 207
Cdd:smart00220 111 EYLHSKGIVHRDLKPENILLDEDgHVKLADFGLArQLDPGEKLTTFVGtpeymapevlLGKGYGK--AVDIWSLGVILYE 188

                   ....*..
gi 1160595246  208 MTYGRPP 214
Cdd:smart00220 189 LLTGKPP 195
 
Name Accession Description Interval E-value
PKc cd00180
Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group ...
61-208 1.30e-09

Catalytic domain of Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine or tyrosine residues on protein substrates. PKs make up a large family of serine/threonine kinases (STKs), protein tyrosine kinases (PTKs), and dual-specificity PKs that phosphorylate both serine/threonine and tyrosine residues of target proteins. Majority of protein phosphorylation occurs on serine residues while only 1% occurs on tyrosine residues. Protein phosphorylation is a mechanism by which a wide variety of cellular proteins, such as enzymes and membrane channels, are reversibly regulated in response to certain stimuli. PKs often function as components of signal transduction pathways in which one kinase activates a second kinase, which in turn, may act on other kinases; this sequential action transmits a signal from the cell surface to target proteins, which results in cellular responses. The PK family is one of the largest known protein families with more than 100 homologous yeast enzymes and more than 500 human proteins. A fraction of PK family members are pseudokinases that lack crucial residues for catalytic activity. The mutiplicity of kinases allows for specific regulation according to substrate, tissue distribution, and cellular localization. PKs regulate many cellular processes including proliferation, division, differentiation, motility, survival, metabolism, cell-cycle progression, cytoskeletal rearrangement, immunity, and neuronal functions. Many kinases are implicated in the development of various human diseases including different types of cancer. The PK family is part of a larger superfamily that includes the catalytic domains of RIO kinases, aminoglycoside phosphotransferase, choline kinase, phosphoinositide 3-kinase (PI3K), and actin-fragmin kinase.


Pssm-ID: 270622 [Multi-domain]  Cd Length: 215  Bit Score: 57.67  E-value: 1.30e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYIYRVTFATANESSALLIRMFNEKGTLKDLIYKakpkdpflkkycnpkKIQGLELQQIKTYGRQILEVLK 140
Cdd:cd00180    42 IEILKKLNHPNIVKLYDVFETENFLYLVMEYCEGGSLKDLLKE---------------NKGPLSEEEALSILRQLLSALE 106
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 141 FLHDKGFPYGHLHASNVMLDGD---------TCRLLDLENSLLGLPSFYRSYF----SQFRKINTLESVDVHCFGHLLYE 207
Cdd:cd00180   107 YLHSNGIIHRDLKPENILLDSDgtvkladfgLAKDLDSDDSLLKTTGGTTPPYyappELLGGRYYGPKVDIWSLGVILYE 186

                  .
gi 1160595246 208 M 208
Cdd:cd00180   187 L 187
SPS1 COG0515
Serine/threonine protein kinase [Signal transduction mechanisms];
123-232 2.06e-07

Serine/threonine protein kinase [Signal transduction mechanisms];


Pssm-ID: 440281 [Multi-domain]  Cd Length: 482  Bit Score: 52.71  E-value: 2.06e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 123 LELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLDGD-TCRLLDL-------------ENSLLGLPsfyrSYFS--Q 186
Cdd:COG0515   104 LPPAEALRILAQLAEALAAAHAAGIVHRDIKPANILLTPDgRVKLIDFgiaralggatltqTGTVVGTP----GYMApeQ 179
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 1160595246 187 FRKINTLESVDVHCFGHLLYEMTYGRPPdsvpvdsFPPAPSMAVVA 232
Cdd:COG0515   180 ARGEPVDPRSDVYSLGVTLYELLTGRPP-------FDGDSPAELLR 218
PK_eIF2AK_GCN2_rpt1 cd14012
Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or ...
52-257 2.59e-07

Pseudokinase domain, repeat 1, of eukaryotic translation Initiation Factor 2-Alpha Kinase 4 or General Control Non-derepressible-2; The pseudokinase domain shows similarity to protein kinases but lacks crucial residues for catalytic activity. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the overall downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: GCN2, protein kinase regulated by RNA (PKR), heme-regulated inhibitor kinase (HRI), and PKR-like endoplasmic reticulum kinase (PERK). GCN2 is activated by amino acid or serum starvation and UV irradiation. It induces GCN4, a transcriptional activator of amino acid biosynthetic genes, leading to increased production of amino acids under amino acid-deficient conditions. In serum-starved cells, GCN2 activation induces translation of the stress-responsive transcription factor ATF4, while under UV stress, GCN2 triggers transcriptional rescue via NF-kappaB signaling. GCN2 contains an N-terminal RWD, a degenerate kinase-like (repeat 1), the catalytic kinase (repeat 2), a histidyl-tRNA synthetase (HisRS)-like, and a C-terminal ribosome-binding and dimerization (RB/DD) domains. The degenerate pseudokinase domain of GCN2 may function as a regulatory domain. The GCN2 subfamily is part of a larger superfamily that includes the catalytic domains of serine/threonine kinases, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270914 [Multi-domain]  Cd Length: 254  Bit Score: 51.21  E-value: 2.59e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  52 LSDKDFQCLIKLL-PSCLHPYIYRVTFATanESSALLIRMFNE---KGTLKDLIYKAKPkdpflkkycnpkkiqgLELQQ 127
Cdd:cd14012    44 LLEKELESLKKLRhPNLVSYLAFSIERRG--RSDGWKVYLLTEyapGGSLSELLDSVGS----------------VPLDT 105
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 128 IKTYGRQILEVLKFLHDKGFPYGHLHASNVMLDGD----TCRLLD------------------LENSLLGLPSFYRSYFS 185
Cdd:cd14012   106 ARRWTLQLLEALEYLHRNGVVHKSLHAGNVLLDRDagtgIVKLTDyslgktlldmcsrgsldeFKQTYWLPPELAQGSKS 185
                         170       180       190       200       210       220       230
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1160595246 186 QFRKintlesVDVHCFGHLLYEMTYGRP-------PDSVPVdsfPPAPSMAVVAVLESTLSCEACKNgmPTISRLLQMP 257
Cdd:cd14012   186 PTRK------TDVWDLGLLFLQMLFGLDvlekytsPNPVLV---SLDLSASLQDFLSKCLSLDPKKR--PTALELLPHE 253
STKc_STK10 cd06644
Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase ...
9-169 1.15e-06

Catalytic domain of the Serine/Threonine Kinase, STK10 (also called Lymphocyte-Oriented Kinase or LOK); STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. STK10/LOK is also called polo-like kinase kinase 1 in Xenopus (xPlkk1). It is highly expressed in lymphocytes and is responsible in regulating leukocyte function associated antigen (LFA-1)-mediated lymphocyte adhesion. It plays a role in regulating the CD28 responsive element in T cells, and may also function as a regulator of polo-like kinase 1 (Plk1), a protein which is overexpressed in multiple tumor types. The STK10 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 132975 [Multi-domain]  Cd Length: 292  Bit Score: 49.64  E-value: 1.15e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246   9 WEVVEPLKDIGWRirKKYflmkiKNQPKERLVLSWADLGPDKYLSD-KDFQCLIKLLPSCLHPYIYRVTFATANESSALL 87
Cdd:cd06644    14 WEIIGELGDGAFG--KVY-----KAKNKETGALAAAKVIETKSEEElEDYMVEIEILATCNHPYIVKLLGAFYWDGKLWI 86
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  88 IRMFNEKGTLKDLIYKAKpkdpflkkycnpkkiQGLELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVML--DGDTcR 165
Cdd:cd06644    87 MIEFCPGGAVDAIMLELD---------------RGLTEPQIQVICRQMLEALQYLHSMKIIHRDLKAGNVLLtlDGDI-K 150

                  ....
gi 1160595246 166 LLDL 169
Cdd:cd06644   151 LADF 154
STKc_PknB_like cd14014
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ...
55-214 1.72e-06

Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270916 [Multi-domain]  Cd Length: 260  Bit Score: 48.74  E-value: 1.72e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  55 KDFQCLIKLLPSCLHPYIYRV-TFATANESSALLIRMFnEKGTLKDLIykakpkdpflkkycnpKKIQGLELQQIKTYGR 133
Cdd:cd14014    45 ERFLREARALARLSHPNIVRVyDVGEDDGRPYIVMEYV-EGGSLADLL----------------RERGPLPPREALRILA 107
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 134 QILEVLKFLHDKGFpyghLHA----SNVMLDGD-TCRLLDL-ENSLLGLPSFYRS--------YFS--QFRKINTLESVD 197
Cdd:cd14014   108 QIADALAAAHRAGI----VHRdikpANILLTEDgRVKLTDFgIARALGDSGLTQTgsvlgtpaYMApeQARGGPVDPRSD 183
                         170
                  ....*....|....*..
gi 1160595246 198 VHCFGHLLYEMTYGRPP 214
Cdd:cd14014   184 IYSLGVVLYELLTGRPP 200
STKc_nPKC_theta_like cd05592
Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and ...
23-214 2.15e-06

Catalytic domain of the Serine/Threonine Kinases, Novel Protein Kinase C theta, delta, and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. There are four nPKC isoforms, delta, epsilon, eta, and theta. The nPKC-theta-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270744 [Multi-domain]  Cd Length: 320  Bit Score: 48.92  E-value: 2.15e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  23 RKKYFLMKIknqpkerlvlswadLGPDKYLSDKDFQC-LIK---LLPSCLHPYIYRVtFATANESSALLIRMFNEKGtlK 98
Cdd:cd05592    19 TNQYFAIKA--------------LKKDVVLEDDDVECtMIErrvLALASQHPFLTHL-FCTFQTESHLFFVMEYLNG--G 81
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  99 DLIYKAKPKDPFlkkycnpkkiqglELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLDGD---------TCRL-LD 168
Cdd:cd05592    82 DLMFHIQQSGRF-------------DEDRARFYGAEIICGLQFLHSRGIIYRDLKLDNVLLDREghikiadfgMCKEnIY 148
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*....
gi 1160595246 169 LEN---SLLGLPSFYRSYFSQFRKINtlESVDVHCFGHLLYEMTYGRPP 214
Cdd:cd05592   149 GENkasTFCGTPDYIAPEILKGQKYN--QSVDWWSFGVLLYEMLIGQSP 195
PKc_STE cd05122
Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the ...
61-214 3.62e-06

Catalytic domain of STE family Protein Kinases; PKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine (ST) or tyrosine residues on protein substrates. This family is composed of STKs, and some dual-specificity PKs that phosphorylate both threonine and tyrosine residues of target proteins. Most members are kinases involved in mitogen-activated protein kinase (MAPK) signaling cascades, acting as MAPK kinases (MAPKKs), MAPKK kinases (MAPKKKs), or MAPKKK kinases (MAP4Ks). The MAPK signaling pathways are important mediators of cellular responses to extracellular signals. The pathways involve a triple kinase core cascade comprising of the MAPK, which is phosphorylated and activated by a MAPKK, which itself is phosphorylated and activated by a MAPKKK. Each MAPK cascade is activated either by a small GTP-binding protein or by an adaptor protein, which transmits the signal either directly to a MAPKKK to start the triple kinase core cascade or indirectly through a mediator kinase, a MAP4K. Other STE family members include p21-activated kinases (PAKs) and class III myosins, among others. PAKs are Rho family GTPase-regulated kinases that serve as important mediators in the function of Cdc42 (cell division cycle 42) and Rac. Class III myosins are motor proteins containing an N-terminal kinase catalytic domain and a C-terminal actin-binding domain, which can phosphorylate several cytoskeletal proteins, conventional myosin regulatory light chains, as well as autophosphorylate the C-terminal motor domain. They play an important role in maintaining the structural integrity of photoreceptor cell microvilli. The STE family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270692 [Multi-domain]  Cd Length: 254  Bit Score: 47.97  E-value: 3.62e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYI--YRVTFATANEssaLLIRM-FNEKGTLKDLiykakpkdpfLKKYCNPkkiqgLELQQIKTYGRQILE 137
Cdd:cd05122    48 IAILKKCKHPNIvkYYGSYLKKDE---LWIVMeFCSGGSLKDL----------LKNTNKT-----LTEQQIAYVCKEVLK 109
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 138 VLKFLHDKGFPYGHLHASNVML--DGDTcRLLD-----------LENSLLGLPsfyrSYFS--QFRKINTLESVDVHCFG 202
Cdd:cd05122   110 GLEYLHSHGIIHRDIKAANILLtsDGEV-KLIDfglsaqlsdgkTRNTFVGTP----YWMApeVIQGKPYGFKADIWSLG 184
                         170
                  ....*....|..
gi 1160595246 203 HLLYEMTYGRPP 214
Cdd:cd05122   185 ITAIEMAEGKPP 196
STKc_SLK cd06643
Catalytic domain of the Serine/Threonine Kinase, Ste20-Like Kinase; STKs catalyze the transfer ...
6-177 7.07e-06

Catalytic domain of the Serine/Threonine Kinase, Ste20-Like Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. SLK promotes apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and the mitogen-activated protein kinase (MAPK) p38. It acts as a MAPK kinase kinase by phosphorylating ASK1, resulting in the phosphorylation of p38. SLK also plays a role in mediating actin reorganization. It is part of a microtubule-associated complex that is targeted at adhesion sites, and is required in focal adhesion turnover and in regulating cell migration. The SLK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270811 [Multi-domain]  Cd Length: 283  Bit Score: 47.33  E-value: 7.07e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246   6 EPKWEVVEPLKDigwrirkKYFLMKIKNQPKERLVLSWADLGPDKYLSD-KDFQCLIKLLPSCLHPYIYRVTFATANESS 84
Cdd:cd06643     4 EDFWEIVGELGD-------GAFGKVYKAQNKETGILAAAKVIDTKSEEElEDYMVEIDILASCDHPNIVKLLDAFYYENN 76
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  85 ALLIRMFNEKGTLKDLIYKAKpkdpflkkycnpkkiQGLELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVM--LDGD 162
Cdd:cd06643    77 LWILIEFCAGGAVDAVMLELE---------------RPLTEPQIRVVCKQTLEALVYLHENKIIHRDLKAGNILftLDGD 141
                         170       180
                  ....*....|....*....|....*.
gi 1160595246 163 -----------TCRLLDLENSLLGLP 177
Cdd:cd06643   142 ikladfgvsakNTRTLQRRDSFIGTP 167
STKc_nPKC_delta cd05620
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze ...
123-279 7.82e-06

Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C delta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. It slows down cell proliferation, inducing cell cycle arrest and enhancing cell differentiation. PKC-delta is also involved in the regulation of transcription as well as immune and inflammatory responses. It plays a central role in the genotoxic stress response that leads to DNA damaged-induced apoptosis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-delta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 173710 [Multi-domain]  Cd Length: 316  Bit Score: 47.25  E-value: 7.82e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 123 LELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLDGD-TCRLLDL----EN--------SLLGLPSFYRSYFSQFRK 189
Cdd:cd05620    93 FDLYRATFYAAEIVCGLQFLHSKGIIYRDLKLDNVMLDRDgHIKIADFgmckENvfgdnrasTFCGTPDYIAPEILQGLK 172
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 190 INTleSVDVHCFGHLLYEMTYGRPP----------DSVPVDS--FPPAPSMAVVAVLESTLSCEACKNgMPTISRLLQMP 257
Cdd:cd05620   173 YTF--SVDWWSFGVLLYEMLIGQSPfhgddedelfESIRVDTphYPRWITKESKDILEKLFERDPTRR-LGVVGNIRGHP 249
                         170       180
                  ....*....|....*....|..
gi 1160595246 258 LFSDVLLTTSEKPQFKIPTKLK 279
Cdd:cd05620   250 FFKTINWTALEKRELDPPFKPK 271
S_TKc smart00220
Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or ...
61-214 9.91e-06

Serine/Threonine protein kinases, catalytic domain; Phosphotransferases. Serine or threonine-specific kinase subfamily.


Pssm-ID: 214567 [Multi-domain]  Cd Length: 254  Bit Score: 46.37  E-value: 9.91e-06
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246   61 IKLLPSCLHPYIYRVTFATANESSALLIrM-FNEKGTLKDLIYKAKPkdpflkkycnpkkiqgLELQQIKTYGRQILEVL 139
Cdd:smart00220  48 IKILKKLKHPNIVRLYDVFEDEDKLYLV-MeYCEGGDLFDLLKKRGR----------------LSEDEARFYLRQILSAL 110
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  140 KFLHDKGFPYGHLHASNVMLDGD-TCRLLDLENS-LLGLPSFYRSYFS----------QFRKINTleSVDVHCFGHLLYE 207
Cdd:smart00220 111 EYLHSKGIVHRDLKPENILLDEDgHVKLADFGLArQLDPGEKLTTFVGtpeymapevlLGKGYGK--AVDIWSLGVILYE 188

                   ....*..
gi 1160595246  208 MTYGRPP 214
Cdd:smart00220 189 LLTGKPP 195
STKc_Nek cd08215
Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; ...
61-259 6.15e-05

Catalytic domain of the Serine/Threonine Kinase, Never In Mitosis gene A (NIMA)-related kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The Nek family is composed of 11 different mammalian members (Nek1-11) with similarity to the catalytic domain of Aspergillus nidulans NIMA kinase, the founding member of the Nek family, which was identified in a screen for cell cycle mutants that were prevented from entering mitosis. Neks contain a conserved N-terminal catalytic domain and a more divergent C-terminal regulatory region of various sizes and structures. They are involved in the regulation of downstream processes following the activation of Cdc2, and many of their functions are cell cycle-related. They play critical roles in microtubule dynamics during ciliogenesis and mitosis. The Nek family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270855 [Multi-domain]  Cd Length: 258  Bit Score: 43.99  E-value: 6.15e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYI--YRVTFataNESSALLIRM-FNEKGTLKDLIYKAKPKDPFLKKycnpkkiqglelQQIKTYGRQILE 137
Cdd:cd08215    50 VKLLSKLKHPNIvkYYESF---EENGKLCIVMeYADGGDLAQKIKKQKKKGQPFPE------------EQILDWFVQICL 114
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 138 VLKFLHDKGFpyghLH----ASNVMLD-------GD--TCRLL----DLENSLLGLPsfYrsYFS----QFRKINtlESV 196
Cdd:cd08215   115 ALKYLHSRKI----LHrdlkTQNIFLTkdgvvklGDfgISKVLesttDLAKTVVGTP--Y--YLSpelcENKPYN--YKS 184
                         170       180       190       200       210       220       230
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1160595246 197 DVHCFGHLLYEMTYGRPP---DSVPV-------DSFPPAP---SMAVVAVLESTLSCEACKNgmPTISRLLQMPLF 259
Cdd:cd08215   185 DIWALGCVLYELCTLKHPfeaNNLPAlvykivkGQYPPIPsqySSELRDLVNSMLQKDPEKR--PSANEILSSPFI 258
STKc_PKC cd05570
Catalytic domain of the Serine/Threonine Kinase, Protein Kinase C; STKs catalyze the transfer ...
131-214 6.90e-05

Catalytic domain of the Serine/Threonine Kinase, Protein Kinase C; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, classical PKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. Novel PKCs are calcium-independent, but require DAG and PS for activity, while atypical PKCs only require PS. PKCs phosphorylate and modify the activities of a wide variety of cellular proteins including receptors, enzymes, cytoskeletal proteins, transcription factors, and other kinases. They play a central role in signal transduction pathways that regulate cell migration and polarity, proliferation, differentiation, and apoptosis. Also included in this subfamily are the PKC-like proteins, called PKNs. The PKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270722 [Multi-domain]  Cd Length: 318  Bit Score: 44.13  E-value: 6.90e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 131 YGRQILEVLKFLHDKGFPYGHLHASNVMLDGDT-CRLLD------------LENSLLGLPSF-------YRSYFSqfrki 190
Cdd:cd05570   101 YAAEICLALQFLHERGIIYRDLKLDNVLLDAEGhIKIADfgmckegiwggnTTSTFCGTPDYiapeilrEQDYGF----- 175
                          90       100
                  ....*....|....*....|....
gi 1160595246 191 ntleSVDVHCFGHLLYEMTYGRPP 214
Cdd:cd05570   176 ----SVDWWALGVLLYEMLAGQSP 195
STKc_WNK cd13983
Catalytic domain of the Serine/Threonine kinase, With No Lysine (WNK) kinase; STKs catalyze ...
55-214 7.77e-05

Catalytic domain of the Serine/Threonine kinase, With No Lysine (WNK) kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNKs comprise a subfamily of STKs with an unusual placement of a catalytic lysine relative to all other protein kinases. They are critical in regulating ion balance and are thus, important components in the control of blood pressure. They are also involved in cell signaling, survival, proliferation, and organ development. WNKs are activated by hyperosmotic or low-chloride hypotonic stress and they function upstream of SPAK and OSR1 kinases, which regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. There are four vertebrate WNKs which show varying expression patterns. WNK1 and WNK2 are widely expressed while WNK3 and WNK4 show a more restricted expression pattern. Because mutations in human WNK1 and WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension (due to increased sodium reabsorption) and hyperkalemia (due to impaired renal potassium secretion), there are more studies conducted on these two proteins, compared to WNK2 and WNK3. The WNK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270885 [Multi-domain]  Cd Length: 258  Bit Score: 43.75  E-value: 7.77e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  55 KDFQCLIKLLPSCLHPYIyrVTFATA----NESSALLIRMFNEKGTLKDLIykakpkdpflkkycnpKKIQGLELQQIKT 130
Cdd:cd13983    45 QRFKQEIEILKSLKHPNI--IKFYDSweskSKKEVIFITELMTSGTLKQYL----------------KRFKRLKLKVIKS 106
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 131 YGRQILEVLKFLHDKGFPYGH--LHASNVMLDGDT--CRLLDL----------ENSLLGLPSF-----YRSYFSqfrkin 191
Cdd:cd13983   107 WCRQILEGLNYLHTRDPPIIHrdLKCDNIFINGNTgeVKIGDLglatllrqsfAKSVIGTPEFmapemYEEHYD------ 180
                         170       180
                  ....*....|....*....|...
gi 1160595246 192 tlESVDVHCFGHLLYEMTYGRPP 214
Cdd:cd13983   181 --EKVDIYAFGMCLLEMATGEYP 201
STKc_MAPKKK cd06606
Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase ...
61-259 9.39e-05

Catalytic domain of the Serine/Threonine Kinase, Mitogen-Activated Protein Kinase Kinase Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. MAPKKKs (MKKKs or MAP3Ks) are also called MAP/ERK kinase kinases (MEKKs) in some cases. They phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. This subfamily is composed of the Apoptosis Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant and fungal MAPKKKs. Also included in this subfamily are the cell division control proteins Schizosaccharomyces pombe Cdc7 and Saccharomyces cerevisiae Cdc15. The MAPKKK subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270783 [Multi-domain]  Cd Length: 258  Bit Score: 43.66  E-value: 9.39e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYIYRVtFATANESSALLIRM-FNEKGTLKDLIykakpkdpflkkycnpKKIQGLELQQIKTYGRQILEVL 139
Cdd:cd06606    50 IRILSSLKHPNIVRY-LGTERTENTLNIFLeYVPGGSLASLL----------------KKFGKLPEPVVRKYTRQILEGL 112
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 140 KFLHDKGFPYGHLHASNVMLDGD---------TCRLLDLENSLLGLPSFYRS-YF---------SQFRKintlesVDVHC 200
Cdd:cd06606   113 EYLHSNGIVHRDIKGANILVDSDgvvkladfgCAKRLAEIATGEGTKSLRGTpYWmapevirgeGYGRA------ADIWS 186
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 201 FGHLLYEMTYGRPP-----DSVPV-------DSFPPAPsmavvavleSTLSCEA------C----KNGMPTISRLLQMPL 258
Cdd:cd06606   187 LGCTVIEMATGKPPwselgNPVAAlfkigssGEPPPIP---------EHLSEEAkdflrkClqrdPKKRPTADELLQHPF 257

                  .
gi 1160595246 259 F 259
Cdd:cd06606   258 L 258
STKc_nPKC_eta cd05590
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C eta; STKs catalyze the ...
46-214 1.31e-04

Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C eta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-eta subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270742 [Multi-domain]  Cd Length: 323  Bit Score: 43.36  E-value: 1.31e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  46 LGPDKYLSDKDFQCLIK----LLPSCLHPYIYRVTFATANESSALLIRMFNEKGTLKDLIYKAKPKDPFLKKYcnpkkiq 121
Cdd:cd05590    28 LKKDVILQDDDVECTMTekriLSLARNHPFLTQLYCCFQTPDRLFFVMEFVNGGDLMFHIQKSRRFDEARARF------- 100
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 122 glelqqiktYGRQILEVLKFLHDKGFPYGHLHASNVMLDGDT-CRLLD------------LENSLLGLPSFYRSYFSQfr 188
Cdd:cd05590   101 ---------YAAEITSALMFLHDKGIIYRDLKLDNVLLDHEGhCKLADfgmckegifngkTTSTFCGTPDYIAPEILQ-- 169
                         170       180
                  ....*....|....*....|....*.
gi 1160595246 189 KINTLESVDVHCFGHLLYEMTYGRPP 214
Cdd:cd05590   170 EMLYGPSVDWWAMGVLLYEMLCGHAP 195
STKc_nPKC_theta cd05619
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze ...
123-214 3.76e-04

Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C theta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. Although T-cells also express other PKC isoforms, PKC-theta is unique in that upon antigen stimulation, it is translocated to the plasma membrane at the immunological synapse, where it mediates signals essential for T-cell activation. It is essential for TCR-induced proliferation, cytokine production, T-cell survival, and the differentiation and effector function of T-helper (Th) cells, particularly Th2 and Th17. PKC-theta is being developed as a therapeutic target for Th2-mediated allergic inflammation and Th17-mediated autoimmune diseases. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270770 [Multi-domain]  Cd Length: 331  Bit Score: 42.22  E-value: 3.76e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 123 LELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLDGDT-CRLLDL------------ENSLLGLPSFYRSYFSQFRK 189
Cdd:cd05619   103 FDLPRATFYAAEIICGLQFLHSKGIVYRDLKLDNILLDKDGhIKIADFgmckenmlgdakTSTFCGTPDYIAPEILLGQK 182
                          90       100
                  ....*....|....*....|....*
gi 1160595246 190 INTleSVDVHCFGHLLYEMTYGRPP 214
Cdd:cd05619   183 YNT--SVDWWSFGVLLYEMLIGQSP 205
STKc_cPKC_beta cd05616
Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C beta; STKs ...
131-214 4.38e-04

Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C beta; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG, and in most cases, phosphatidylserine (PS) for activation. The cPKC-beta subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270767 [Multi-domain]  Cd Length: 323  Bit Score: 41.91  E-value: 4.38e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 131 YGRQILEVLKFLHDKGFPYGHLHASNVMLDGD---------TCR--LLD--LENSLLGLPSFYRSYFSQFRKINtlESVD 197
Cdd:cd05616   106 YAAEIAIGLFFLQSKGIIYRDLKLDNVMLDSEghikiadfgMCKenIWDgvTTKTFCGTPDYIAPEIIAYQPYG--KSVD 183
                          90
                  ....*....|....*..
gi 1160595246 198 VHCFGHLLYEMTYGRPP 214
Cdd:cd05616   184 WWAFGVLLYEMLAGQAP 200
STKc_IRAK cd14066
Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases ...
53-214 7.39e-04

Catalytic domain of the Serine/Threonine kinases, Interleukin-1 Receptor Associated Kinases and related STKs; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. IRAKs are involved in Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways, and are thus critical in regulating innate immune responses and inflammation. Some IRAKs may also play roles in T- and B-cell signaling, and adaptive immunity. Vertebrates contain four IRAKs (IRAK-1, -2, -3 (or -M), and -4) that display distinct functions and patterns of expression and subcellular distribution, and can differentially mediate TLR signaling. IRAK-1, -2, and -4 are ubiquitously expressed and are active kinases, while IRAK-M is only induced in monocytes and macrophages and is an inactive kinase. Variations in IRAK genes are linked to diverse diseases including infection, sepsis, cancer, and autoimmune diseases. IRAKs contain an N-terminal Death domain (DD), a proST region (rich in serines, prolines, and threonines), a central kinase domain (a pseudokinase domain in the case of IRAK3), and a C-terminal domain; IRAK-4 lacks the C-terminal domain. This subfamily includes plant receptor-like kinases (RLKs) including Arabidopsis thaliana BAK1 and CLAVATA1 (CLV1). BAK1 functions in BR (brassinosteroid)-regulated plant development and in pathways involved in plant resistance to pathogen infection and herbivore attack. CLV1, directly binds small signaling peptides, CLAVATA3 (CLV3) and CLAVATA3/EMBRYO SURROUNDING REGI0N (CLE), to restrict stem cell proliferation: the CLV3-CLV1-WUS (WUSCHEL) module influences stem cell maintenance in the shoot apical meristem, and the CLE40 (CLAVATA3/EMBRYO SURROUNDING REGION40) -ACR4 (CRINKLY4) -CLV1- WOX5 (WUSCHEL-RELATED HOMEOBOX5) module at the root apical meristem. The IRAK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270968 [Multi-domain]  Cd Length: 272  Bit Score: 40.72  E-value: 7.39e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  53 SDKDFQCLIKLLPSCLHPYIYRV-TFATANESSaLLIRMFNEKGTLKDLIYKAKPKDPflkkycnpkkiqgLELQQIKTY 131
Cdd:cd14066    33 SKKEFLTELEMLGRLRHPNLVRLlGYCLESDEK-LLVYEYMPNGSLEDRLHCHKGSPP-------------LPWPQRLKI 98
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 132 GRQILEVLKFLHDKGFP---YGHLHASNVMLD-------GD--TCRLLDLENSLL------GLPSFYRSYFSQFRKINTl 193
Cdd:cd14066    99 AKGIARGLEYLHEECPPpiiHGDIKSSNILLDedfepklTDfgLARLIPPSESVSktsavkGTIGYLAPEYIRTGRVST- 177
                         170       180
                  ....*....|....*....|.
gi 1160595246 194 eSVDVHCFGHLLYEMTYGRPP 214
Cdd:cd14066   178 -KSDVYSFGVVLLELLTGKPA 197
STKc_WNK4 cd14033
Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 4; STKs catalyze ...
111-216 7.48e-04

Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 4; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK4 shows a restricted expression pattern and is usually found in epithelial cells. It is expressed in nephrons and in extrarenal tissues including intestine, eye, mammary glands, and prostate. WNK4 regulates a variety of ion transport proteins including apical or basolateral ion transporters, ion channels in the transcellular pathway, and claudins in the paracellular pathway. Mutations in WNK4 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension and hyperkalemia. WNK4 inhibits the activity of the thiazide-sensitive Na-Cl cotransporter (NCC), which is responsible for about 15% of NaCl reabsorption in the kidney. It also inhibits the renal outer medullary potassium channel (ROMK) and decreases its surface expression. Hypertension and hyperkalemia in PHAII patients with WNK4 mutations may be partly due to increased NaCl reabsorption through NCC and impaired renal potassium secretion by ROMK, respectively. The WNK4 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270935 [Multi-domain]  Cd Length: 261  Bit Score: 40.76  E-value: 7.48e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 111 LKKYCnpKKIQGLELQQIKTYGRQILEVLKFLHDKGFPYGH--LHASNVMLDGDT--CRLLDLENSLLGLPSFYRSYFS- 185
Cdd:cd14033    91 LKTYL--KRFREMKLKLLQRWSRQILKGLHFLHSRCPPILHrdLKCDNIFITGPTgsVKIGDLGLATLKRASFAKSVIGt 168
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1160595246 186 ------QFRKINTLESVDVHCFGHLLYEMTYGRPPDS 216
Cdd:cd14033   169 pefmapEMYEEKYDEAVDVYAFGMCILEMATSEYPYS 205
STKc_MEKK1_plant cd06632
Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP) ...
61-214 7.59e-04

Catalytic domain of the Serine/Threonine Kinase, Plant Mitogen-Activated Protein (MAP)/Extracellular signal-Regulated Kinase (ERK) Kinase Kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily is composed of plant MAPK kinase kinases (MAPKKKs) including Arabidopsis thaliana MEKK1 and MAPKKK3. Arabidopsis thaliana MEKK1 activates MPK4, a MAPK that regulates systemic acquired resistance. MEKK1 also participates in the regulation of temperature-sensitive and tissue-specific cell death. MAPKKKs phosphorylate and activate MAPK kinases, which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. The plant MEKK1 subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270802 [Multi-domain]  Cd Length: 259  Bit Score: 40.85  E-value: 7.59e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYIYRVtFATANESSALLIRM-FNEKGTLKDLiykakpkdpfLKKYcnpkkiQGLELQQIKTYGRQILEVL 139
Cdd:cd06632    53 IALLSKLRHPNIVQY-YGTEREEDNLYIFLeYVPGGSIHKL----------LQRY------GAFEEPVIRLYTRQILSGL 115
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 140 KFLHDKGFPYGHLHASNVMLDGD-TCRLLD------LENSLLGLpSFYRSYF-------SQFRKINTLEsVDVHCFGHLL 205
Cdd:cd06632   116 AYLHSRNTVHRDIKGANILVDTNgVVKLADfgmakhVEAFSFAK-SFKGSPYwmapeviMQKNSGYGLA-VDIWSLGCTV 193

                  ....*....
gi 1160595246 206 YEMTYGRPP 214
Cdd:cd06632   194 LEMATGKPP 202
STKc_EIF2AK cd13996
Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor ...
61-163 9.49e-04

Catalytic domain of the Serine/Threonine kinase, eukaryotic translation Initiation Factor 2-Alpha Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. EIF2AKs phosphorylate the alpha subunit of eIF-2, resulting in the downregulation of protein synthesis. eIF-2 phosphorylation is induced in response to cellular stresses including virus infection, heat shock, nutrient deficiency, and the accummulation of unfolded proteins, among others. There are four distinct kinases that phosphorylate eIF-2 and control protein synthesis under different stress conditions: General Control Non-derepressible-2 (GCN2) which is activated during amino acid or serum starvation; protein kinase regulated by RNA (PKR) which is activated by double stranded RNA; heme-regulated inhibitor kinase (HRI) which is activated under heme-deficient conditions; and PKR-like endoplasmic reticulum kinase (PERK) which is activated when misfolded proteins accumulate in the ER. The EIF2AK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270898 [Multi-domain]  Cd Length: 273  Bit Score: 40.74  E-value: 9.49e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  61 IKLLPSCLHPYIYRVTFATAnESSALLIRM-FNEKGTLKDLIYKAkpkdpfLKKYCNPKKiqglelqQIKTYGRQILEVL 139
Cdd:cd13996    55 VKALAKLNHPNIVRYYTAWV-EEPPLYIQMeLCEGGTLRDWIDRR------NSSSKNDRK-------LALELFKQILKGV 120
                          90       100
                  ....*....|....*....|....
gi 1160595246 140 KFLHDKGFPYGHLHASNVMLDGDT 163
Cdd:cd13996   121 SYIHSKGIVHRDLKPSNIFLDNDD 144
STKc_CMGC cd05118
Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the ...
121-220 1.66e-03

Catalytic domain of CMGC family Serine/Threonine Kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The CMGC family consists of Cyclin-Dependent protein Kinases (CDKs), Mitogen-activated protein kinases (MAPKs) such as Extracellular signal-regulated kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38, and other kinases. CDKs belong to a large subfamily of STKs that are regulated by their cognate cyclins. Together, they are involved in the control of cell-cycle progression, transcription, and neuronal function. MAPKs serve as important mediators of cellular responses to extracellular signals. They control critical cellular functions including differentiation, proliferation, migration, and apoptosis. They are also implicated in the pathogenesis of many diseases including multiple types of cancer, stroke, diabetes, and chronic inflammation. Other members of the CMGC family include casein kinase 2 (CK2), Dual-specificity tYrosine-phosphorylated and -Regulated Kinase (DYRK), Glycogen Synthase Kinase 3 (GSK3), among many others. The CMGC family is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270688 [Multi-domain]  Cd Length: 249  Bit Score: 39.53  E-value: 1.66e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 121 QGLELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLDGDTC--RLLDL---------ENSLLGLPSFYRSYFSQFRK 189
Cdd:cd05118    96 RGLPLDLIKSYLYQLLQALDFLHSNGIIHRDLKPENILINLELGqlKLADFglarsftspPYTPYVATRWYRAPEVLLGA 175
                          90       100       110
                  ....*....|....*....|....*....|...
gi 1160595246 190 INTLESVDVHCFGHLLYEMTYGRP--PDSVPVD 220
Cdd:cd05118   176 KPYGSSIDIWSLGCILAELLTGRPlfPGDSEVD 208
STKc_WNK2_like cd14032
Catalytic domain of With No Lysine (WNK) 2-like Serine/Threonine kinases; STKs catalyze the ...
41-216 2.25e-03

Catalytic domain of With No Lysine (WNK) 2-like Serine/Threonine kinases; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK2 is widely expressed and has been shown to be epigenetically silenced in gliomas. It inhibits cell growth by acting as a negative regulator of MEK1-ERK1/2 signaling. WNK2 modulates growth factor-induced cancer cell proliferation, suggesting that it may be a tumor suppressor gene. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. They are critical in regulating ion balance and are thus, important components in the control of blood pressure. The WNK2-like subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270934 [Multi-domain]  Cd Length: 266  Bit Score: 39.29  E-value: 2.25e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246  41 LSWADLGPDKY--LSDKDFQCLIKLLPSCLHPYIYRvtFATANESSA------LLIRMFNEKGTLKDLIYKAKPKDPflk 112
Cdd:cd14032    29 VAWCELQDRKLtkVERQRFKEEAEMLKGLQHPNIVR--FYDFWESCAkgkrciVLVTELMTSGTLKTYLKRFKVMKP--- 103
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 113 kycnpkkiqglelQQIKTYGRQILEVLKFLHDKGFPYGH--LHASNVMLDGDT--CRLLDLENSLLGLPSFYRSYFS--- 185
Cdd:cd14032   104 -------------KVLRSWCRQILKGLLFLHTRTPPIIHrdLKCDNIFITGPTgsVKIGDLGLATLKRASFAKSVIGtpe 170
                         170       180       190
                  ....*....|....*....|....*....|....*
gi 1160595246 186 ----QFRKINTLESVDVHCFGHLLYEMTYGRPPDS 216
Cdd:cd14032   171 fmapEMYEEHYDESVDVYAFGMCMLEMATSEYPYS 205
STKc_WNK3 cd14031
Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 3; STKs catalyze ...
111-216 2.83e-03

Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 3; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK3 shows a restricted expression pattern; it is found at high levels in the pituary glands and is also expressed in the kidney and brain. It has been shown to regulate many ion transporters including members of the SLC12A family of cation-chloride cotransporters such as NCC and NKCC2, the renal potassium channel ROMK, and the epithelial calcium channels TRPV5 and TRPV6. WNK3 appears to sense low-chloride hypotonic stress and under these conditions, it activates SPAK, which directly interacts and phosphorylates cation-chloride cotransporters. WNK3 has also been shown to promote cell survival, possibly through interaction with procaspase-3 and HSP70. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. The WNK3 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270933 [Multi-domain]  Cd Length: 275  Bit Score: 39.32  E-value: 2.83e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 111 LKKYCnpKKIQGLELQQIKTYGRQILEVLKFLHDKGFPYGH--LHASNVMLDGDT--CRLLDLENSLLGLPSFYRSYFS- 185
Cdd:cd14031   100 LKTYL--KRFKVMKPKVLRSWCRQILKGLQFLHTRTPPIIHrdLKCDNIFITGPTgsVKIGDLGLATLMRTSFAKSVIGt 177
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1160595246 186 ------QFRKINTLESVDVHCFGHLLYEMTYGRPPDS 216
Cdd:cd14031   178 pefmapEMYEEHYDESVDVYAFGMCMLEMATSEYPYS 214
STKc_nPKC_epsilon cd05591
Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C epsilon; STKs catalyze ...
131-279 3.85e-03

Catalytic domain of the Serine/Threonine Kinase, Novel Protein Kinase C epsilon; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-epsilon has been shown to behave as an oncoprotein. Its overexpression contributes to neoplastic transformation depending on the cell type. It contributes to oncogenesis by inducing disordered cell growth and inhibiting cell death. It also plays a role in tumor invasion and metastasis. PKC-epsilon has also been found to confer cardioprotection against ischemia and reperfusion-mediated damage. Other cellular functions include the regulation of gene expression, cell adhesion, and cell motility. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. The nPKC-epsilon subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270743 [Multi-domain]  Cd Length: 321  Bit Score: 39.01  E-value: 3.85e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 131 YGRQILEVLKFLHDKGFPYGHLHASNVMLDGDT-CRLLD------------LENSLLGLPSFYRSYFSQfrKINTLESVD 197
Cdd:cd05591   101 YAAEVTLALMFLHRHGVIYRDLKLDNILLDAEGhCKLADfgmckegilngkTTTTFCGTPDYIAPEILQ--ELEYGPSVD 178
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 198 VHCFGHLLYEMTYGRPP----------DSVPVDS--FPPAPSMAVVAVLES--------TLSCEACKNGMPTIsrlLQMP 257
Cdd:cd05591   179 WWALGVLMYEMMAGQPPfeadneddlfESILHDDvlYPVWLSKEAVSILKAfmtknpakRLGCVASQGGEDAI---RQHP 255
                         170       180
                  ....*....|....*....|..
gi 1160595246 258 LFSDVLLTTSEKPQFKIPTKLK 279
Cdd:cd05591   256 FFREIDWEALEQRKVKPPFKPK 277
STKc_WNK1 cd14030
Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 1; STKs catalyze ...
111-216 5.73e-03

Catalytic domain of the Serine/Threonine protein kinase, With No Lysine (WNK) 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. WNK1 is widely expressed and is most abundant in the testis. In hyperosmotic or hypotonic low-chloride stress conditions, WNK1 is activated and it phosphorylates its substrates including SPAK and OSR1 kinases, which regulate the activity of cation-chloride cotransporters through direct interaction and phosphorylation. Mutations in WNK1 cause PseudoHypoAldosteronism type II (PHAII), characterized by hypertension and hyperkalemia. WNK1 negates WNK4-mediated inhibition of the sodium-chloride cotransporter NCC and activates the epithelial sodium channel ENaC by activating SGK1. WNK1 also decreases the surface expression of renal outer medullary potassium channel (ROMK) by stimulating their endocytosis. Hypertension and hyperkalemia in PHAII patients with WNK1 mutations may be due partly to increased activity of NCC and ENaC, and impaired renal potassium secretion by ROMK, respectively. In addition, WNK1 interacts with MEKK2/3 and acts as an activator of extracellular signal-regulated kinase (ERK) 5. It also negatively regulates TGFbeta signaling. WNKs comprise a subfamily of STKs with an unusual placement of the catalytic lysine relative to all other protein kinases. The WNK1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270932 [Multi-domain]  Cd Length: 289  Bit Score: 38.11  E-value: 5.73e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 111 LKKYCnpKKIQGLELQQIKTYGRQILEVLKFLHDKGFPYGH--LHASNVMLDGDT--CRLLDLENSLLGLPSFYRSYFS- 185
Cdd:cd14030   115 LKTYL--KRFKVMKIKVLRSWCRQILKGLQFLHTRTPPIIHrdLKCDNIFITGPTgsVKIGDLGLATLKRASFAKSVIGt 192
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 1160595246 186 ------QFRKINTLESVDVHCFGHLLYEMTYGRPPDS 216
Cdd:cd14030   193 pefmapEMYEEKYDESVDVYAFGMCMLEMATSEYPYS 229
STKc_cPKC_alpha cd05615
Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C alpha; STKs ...
131-214 7.35e-03

Catalytic domain of the Serine/Threonine Kinase, Classical Protein Kinase C alpha; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. The cPKC-alpha subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270766 [Multi-domain]  Cd Length: 341  Bit Score: 38.05  E-value: 7.35e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 131 YGRQILEVLKFLHDKGFPYGHLHASNVMLDGD---------TCRLLDLE----NSLLGLPSFYRSYFSQFRKINtlESVD 197
Cdd:cd05615   116 YAAEISVGLFFLHKKGIIYRDLKLDNVMLDSEghikiadfgMCKEHMVEgvttRTFCGTPDYIAPEIIAYQPYG--RSVD 193
                          90
                  ....*....|....*..
gi 1160595246 198 VHCFGHLLYEMTYGRPP 214
Cdd:cd05615   194 WWAYGVLLYEMLAGQPP 210
STKc_PKA cd14209
Catalytic subunit of the Serine/Threonine Kinase, cAMP-dependent protein kinase; STKs catalyze ...
118-214 8.68e-03

Catalytic subunit of the Serine/Threonine Kinase, cAMP-dependent protein kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The inactive PKA holoenzyme is a heterotetramer composed of two phosphorylated and active catalytic subunits with a dimer of regulatory (R) subunits. Activation is achieved through the binding of the important second messenger cAMP to the R subunits, which leads to the dissociation of PKA into the R dimer and two active subunits. PKA is present ubiquitously in cells and interacts with many different downstream targets. It plays a role in the regulation of diverse processes such as growth, development, memory, metabolism, gene expression, immunity, and lipolysis. The PKA subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 271111 [Multi-domain]  Cd Length: 290  Bit Score: 37.77  E-value: 8.68e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1160595246 118 KKIQGLELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLD----------GDTCRLLDLENSLLGLPSFYRSYFSQF 187
Cdd:cd14209    93 RRIGRFSEPHARFYAAQIVLAFEYLHSLDLIYRDLKPENLLIDqqgyikvtdfGFAKRVKGRTWTLCGTPEYLAPEIILS 172
                          90       100
                  ....*....|....*....|....*..
gi 1160595246 188 RKINTleSVDVHCFGHLLYEMTYGRPP 214
Cdd:cd14209   173 KGYNK--AVDWWALGVLIYEMAAGYPP 197
STKc_VRK cd14015
Catalytic domain of the Serine/Threonine protein kinase, Vaccinia Related Kinase; STKs ...
115-160 9.04e-03

Catalytic domain of the Serine/Threonine protein kinase, Vaccinia Related Kinase; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. VRKs were initially discovered due to its similarity to vaccinia virus B1R STK, which is important for viral replication. They play important roles in cell signaling, nuclear envelope dynamics, apoptosis, and stress responses. Vertebrates contain three VRK proteins (VRK1, VRK2, and VRK3) while invertebrates, specifically fruit flies and nematodes, seem to carry only a single ortholog. Mutations of VRK in Drosophila and Caenorhabditis elegans showed varying phenotypes ranging from embryonic lethality to mitotic and meiotic defects resulting in sterility. In vertebrates, VRK1 is implicated in cell cycle progression and proliferation, nuclear envelope assembly, and chromatin condensation. VRK2 is involved in modulating JNK signaling. VRK3 is an inactive pseudokinase that inhibits ERK signaling. The VRK subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.


Pssm-ID: 270917 [Multi-domain]  Cd Length: 300  Bit Score: 37.65  E-value: 9.04e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 1160595246 115 CNPKKiqgLELQQIKTYGRQILEVLKFLHDKGFPYGHLHASNVMLD 160
Cdd:cd14015   119 KNGKR---FPEKTVLQLALRILDVLEYIHENGYVHADIKASNLLLG 161
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH