Autosomal recessive limb-girdle muscular dystrophy type 2C- MedGen UID:
- 98045
- •Concept ID:
- C0410173
- •
- Disease or Syndrome
A subtype of autosomal recessive limb-girdle muscular dystrophy characterized by a childhood onset of progressive shoulder and pelvic girdle muscle weakness and atrophy frequently associated with calf hypertrophy, diaphragmatic weakness, and/or variable cardiac abnormalities. Mild to moderate elevated serum creatine kinase levels and positive Gowers sign are reported.
Ullrich congenital muscular dystrophy 1A- MedGen UID:
- 98046
- •Concept ID:
- C0410179
- •
- Disease or Syndrome
Collagen VI-related dystrophies (COL6-RDs) represent a continuum of overlapping clinical phenotypes with Bethlem muscular dystrophy at the milder end, Ullrich congenital muscular dystrophy (UCMD) at the more severe end, and a phenotype in between UCMD and Bethlem muscular dystrophy, referred to as intermediate COL6-RD. Bethlem muscular dystrophy is characterized by a combination of proximal muscle weakness and joint contractures. Hypotonia and delayed motor milestones occur in early childhood; mild hypotonia and weakness may be present congenitally. By adulthood, there is evidence of proximal weakness and contractures of the elbows, Achilles tendons, and long finger flexors. The progression of weakness is slow, and more than two thirds of affected individuals older than age 50 years remain independently ambulatory indoors, while relying on supportive means for mobility outdoors. Respiratory involvement is not a consistent feature. UCMD is characterized by congenital weakness, hypotonia, proximal joint contractures, and striking hyperlaxity of distal joints. Decreased fetal movements are frequently reported. Some affected children acquire the ability to walk independently; however, progression of the disease results in a loss of ambulation by age ten to eleven years. Early and severe respiratory insufficiency occurs in all individuals, resulting in the need for nocturnal noninvasive ventilation (NIV) in the form of bilevel positive airway pressure (BiPAP) by age 11 years. Intermediate COL6-RD is characterized by independent ambulation past age 11 years and respiratory insufficiency that is later in onset than in UCMD and results in the need for NIV in the form of BiPAP by the late teens to early 20s. In contrast to individuals with Bethlem muscular dystrophy, those with intermediate COL6-RD typically do not achieve the ability to run, jump, or climb stairs without use of a railing.
Bethlem myopathy- MedGen UID:
- 331805
- •Concept ID:
- C1834674
- •
- Disease or Syndrome
Bethlem myopathy-1 (BTHLM1) is a congenital muscular dystrophy characterized by distal joint laxity and a combination of distal and proximal joint contractures. The age at onset is highly variable, ranging from infancy to adulthood. Disease progression is slow and ambulation is usually retained into adulthood (summary by Butterfield et al., 2013).
Genetic Heterogeneity of Bethlem Myopathy
See Bethlem myopathy-1B (BTHLM1B; 620725), caused by mutation in the COL6A2 gene (120240) on chromosome 21q22; Bethlem myopathy-1C (620726), caused by mutation the COL6A3 gene (120250) on chromosome 2q37; and Bethlem myopathy-2 (BTHLM2; 616471), caused by mutation in the COL12A1 gene (120320) on chromosome 6q13-q14.
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 1- MedGen UID:
- 371919
- •Concept ID:
- C1834846
- •
- Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Spinal muscular atrophy, type IV- MedGen UID:
- 325364
- •Concept ID:
- C1838230
- •
- Disease or Syndrome
Spinal muscular atrophy (SMA) is characterized by muscle weakness and atrophy resulting from progressive degeneration and irreversible loss of the anterior horn cells in the spinal cord (i.e., lower motor neurons) and the brain stem nuclei. The onset of weakness ranges from before birth to adulthood. The weakness is symmetric, proximal > distal, and progressive. Before the genetic basis of SMA was understood, it was classified into clinical subtypes based on maximum motor function achieved; however, it is now apparent that the phenotype of SMN1-associated SMA spans a continuum without clear delineation of subtypes. With supportive care only, poor weight gain with growth failure, restrictive lung disease, scoliosis, and joint contractures are common complications; however, newly available targeted treatment options are changing the natural history of this disease.
X-linked myopathy with excessive autophagy- MedGen UID:
- 374264
- •Concept ID:
- C1839615
- •
- Disease or Syndrome
X-linked myopathy with excessive autophagy (XMEA) is an X-linked recessive skeletal muscle disorder characterized by childhood onset of progressive muscle weakness and atrophy primarily affecting the proximal muscles. While onset is usually in childhood, it can range from infancy to adulthood. Many patients lose ambulation and become wheelchair-bound. Other organ systems, including the heart, are clinically unaffected. Muscle biopsy shows intracytoplasmic autophagic vacuoles with sarcolemmal features and a multilayered basal membrane (summary by Ramachandran et al., 2013; Kurashige et al., 2013, and Ruggieri et al., 2015).
Danon disease (300257), caused by mutation in the LAMP2 gene (309060) on chromosome Xq24, is a distinct disorder with similar pathologic features.
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis- MedGen UID:
- 375302
- •Concept ID:
- C1843851
- •
- Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Glycogen storage disease IXd- MedGen UID:
- 335112
- •Concept ID:
- C1845151
- •
- Disease or Syndrome
Phosphorylase kinase (PhK) deficiency causing glycogen storage disease type IX (GSD IX) results from deficiency of the enzyme phosphorylase b kinase, which has a major regulatory role in the breakdown of glycogen. The two types of PhK deficiency are liver PhK deficiency (characterized by early childhood onset of hepatomegaly and growth restriction, and often, but not always, fasting ketosis and hypoglycemia) and muscle PhK deficiency, which is considerably rarer (characterized by any of the following: exercise intolerance, myalgia, muscle cramps, myoglobinuria, and progressive muscle weakness). While symptoms and biochemical abnormalities of liver PhK deficiency were thought to improve with age, it is becoming evident that affected individuals need to be monitored for long-term complications such as liver fibrosis and cirrhosis.
Autosomal recessive limb-girdle muscular dystrophy type 2D- MedGen UID:
- 424706
- •Concept ID:
- C2936332
- •
- Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-3 (LGMDR3) affects mainly the proximal muscles and results in difficulty walking. Most individuals have onset in childhood; the disorder is progressive. Other features may include scapular winging, calf pseudohypertrophy, and contractures. Cardiomyopathy has rarely been reported (summary by Babameto-Laku et al., 2011).
For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
MEGF10-related myopathy- MedGen UID:
- 482309
- •Concept ID:
- C3280679
- •
- Disease or Syndrome
Congenital myopathy-10A (CMYO10A) is a severe autosomal recessive skeletal muscle disorder characterized by generalized hypotonia, respiratory insufficiency, and poor feeding apparent from birth. Decreased fetal movements may be observed. More variable features include high-arched palate, distal joint contractures, foot deformities, scoliosis, areflexia, and dysphagia. Many patients show eventration of the diaphragm. Affected individuals become ventilator-dependent in the first months or years of life and never achieve walking; many die in childhood (Logan et al., 2011).
Patients with more damaging mutations in the MEGF10 gene, including nonsense or frameshift null mutations, show the more severe phenotype (CMYO10A), whereas those with missense mutations affecting conserved cysteine residues in the EGF-like domain show the less severe phenotype with later onset of respiratory failure and minicores on muscle biopsy (CMYO10B) (Croci et al., 2022).
For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 1- MedGen UID:
- 897191
- •Concept ID:
- C4225153
- •
- Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Neuromuscular disease and ocular or auditory anomalies with or without seizures- MedGen UID:
- 1684689
- •Concept ID:
- C5231483
- •
- Disease or Syndrome
Muscular dystrophy, limb-girdle, autosomal recessive 26- MedGen UID:
- 1718449
- •Concept ID:
- C5394268
- •
- Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-26 (LGMDR26) is a muscle disorder characterized by adult-onset weakness that primarily affects the proximal muscles of the lower limbs. The disorder is slowly progressive, with later involvement of the upper limbs and fatty replacement of muscle tissue apparent on MRI. Some patients may have calf hypertrophy. Serum creatine kinase is significantly elevated, and skeletal muscle biopsy shows typical dystrophic features with normal ultrastructural findings. There is no cardiac or respiratory involvement (summary by Vissing et al., 2019).
For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Autosomal recessive limb-girdle muscular dystrophy type 2X- MedGen UID:
- 1799561
- •Concept ID:
- C5568138
- •
- Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-25 (LGMDR25) is characterized by slowly progressive onset of proximal lower limb weakness in adulthood. Affected individuals also develop cardiac arrhythmias resulting in syncopal episodes as young adults or later in life (summary by Schindler et al., 2016).
For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy (LGMD), see LGMDR1 (253600).
Myopathy with myalgia, increased serum creatine kinase, and with or without episodic rhabdomyolysis- MedGen UID:
- 1824033
- •Concept ID:
- C5774260
- •
- Disease or Syndrome
Myopathy with myalgia, increased serum creatine kinase, and with or without episodic rhabdomyolysis-1 (MMCKR1) is an autosomal recessive skeletal muscle disorder characterized by the onset of muscle cramping and stiffness on exertion in infancy or early childhood, although later (even adult) onset has also been reported. The features remit with rest, but some individuals develop mild proximal or distal muscle weakness. Rare affected individuals may demonstrate cardiac involvement, including left ventricular dysfunction or rhythm abnormalities. Laboratory studies show increased baseline serum creatine kinase levels with episodic spikes that may coincide with rhabdomyolysis. EMG shows myopathic changes, and muscle biopsy shows nonspecific myopathic or degenerative features (Lopes Abath Neto et al., 2021; Salzer-Sheelo et al., 2022).
Genetic Heterogeneity of Myopathy with Myalgia, Increased Serum Creatine Kinase, and with or without Episodic Rhabdomyolysis
MMCKR2 (620971) is caused by mutation in the DTNA gene (601239) on chromosome 18q12.
Bethlem myopathy 1B- MedGen UID:
- 1859128
- •Concept ID:
- C5935580
- •
- Disease or Syndrome
Bethlem myopathy-1 (BTHLM1) is a congenital muscular dystrophy characterized by proximal muscle weakness and a combination of distal and proximal flexion joint contractures. The age at onset is highly variable, ranging from infancy to adulthood, and there is intrafamilial variability. Muscle biopsy may show myopathic and dystrophic features; serum creatine kinase is elevated. The progression is slow and ambulation is usually retained into adulthood (summary by Butterfield et al., 2013; Scacheri et al., 2002).
For a discussion of genetic heterogeneity of Bethlem myopathy, see BTHLM1A (158810).
Ullrich congenital muscular dystrophy 1B- MedGen UID:
- 1859300
- •Concept ID:
- C5935582
- •
- Disease or Syndrome
Ullrich congenital muscular dystrophy-1 (UCMD1) is characterized by generalized muscle weakness and striking hypermobility of distal joints in conjunction with variable contractures of more proximal joints and normal intelligence. Additional findings may include kyphoscoliosis, protruded calcanei, and follicular hyperkeratosis. Some patients manifest at birth and never achieve independent ambulation, whereas others maintain ambulation into adulthood. Progressive scoliosis and deterioration of respiratory function is a typical feature (summary by Kirschner, 2013).
For general phenotypic information and a discussion of genetic heterogeneity of Ullrich congenital muscular dystrophy, see UCMD1A (254090).