U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 89

1.

Ataxia-telangiectasia syndrome

The phenotypic spectrum of ataxia-telangiectasia (A-T), a multisystem disorder, is a continuum ranging from classic A-T at the severe end and variant A-T at the milder end. Nonetheless, distinguishing between classic A-T and variant A-T on this spectrum helps understand differences in disease course, rate of progression, and life expectancy. Classic A-T is characterized by childhood onset of progressive neurologic manifestations (initially cerebellar ataxia, followed typically by extrapyramidal involvement and peripheral sensorimotor neuropathy), immunodeficiency (variably associated with abnormalities of humoral immunity, cellular immunity, or combined immune deficiency), pulmonary disease (resulting from recurrent infections, immune deficiency, aspiration, interstitial lung disease, and neurologic abnormalities), and increased risk of malignancy. Although it is generally accepted that intellectual disability is not common in A-T, disturbances in cerebellar as well as non-cerebellar brain areas and networks may result in cognitive deficits. Increased sensitivity to ionizing radiation (x-ray and gamma ray) can result in severe side effects from such treatments. Life expectancy is significantly reduced due to cancer, pulmonary disease, and infections. Variant A-T has a significantly milder disease course. While cerebellar ataxia can be absent, extrapyramidal movement disorders are common (typically dystonia and dystonic tremor) and most individuals have manifestations of axonal sensorimotor polyneuropathy. In contrast to classic A-T, immune function is generally normal, respiratory infections are not increased, and pulmonary disease is not a major feature. However, risk of developing malignancies is increased, particularly in premenopausal females who have an increased risk of developing breast cancer and hematologic malignancies. [from GeneReviews]

MedGen UID:
439
Concept ID:
C0004135
Disease or Syndrome
2.

Pelizaeus-Merzbacher disease

PLP1 disorders of central nervous system myelin formation include a range of phenotypes from Pelizaeus-Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). PMD typically manifests in infancy or early childhood with nystagmus, hypotonia, and cognitive impairment; the findings progress to severe spasticity and ataxia. Life span is shortened. SPG2 manifests as spastic paraparesis with or without CNS involvement and usually normal life span. Intrafamilial variation of phenotypes can be observed, but the signs are usually fairly consistent within families. Heterozygous females may manifest mild-to-moderate signs of the disease. [from GeneReviews]

MedGen UID:
61440
Concept ID:
C0205711
Disease or Syndrome
3.

Lesch-Nyhan syndrome

HPRT1 disorders, caused by deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt), are typically associated with clinical evidence for overproduction of uric acid (hyperuricemia, nephrolithiasis, and/or gouty arthritis) and varying degrees of neurologic and/or behavioral problems. Historically, three phenotypes were identified in the spectrum of HPRT1 disorders: Lesch-Nyhan disease (LND) at the most severe end with motor dysfunction resembling severe cerebral palsy, intellectual disability, and self-injurious behavior; HPRT1-related neurologic dysfunction (HND) in the intermediate range with similar but fewer severe neurologic findings than LND and no self-injurious behavior; and HPRT1-related hyperuricemia (HRH) at the mild end without overt neurologic deficits. It is now recognized that these neurobehavioral phenotypes cluster along a continuum from severe to mild. [from GeneReviews]

MedGen UID:
9721
Concept ID:
C0023374
Disease or Syndrome
4.

Pyruvate dehydrogenase E1-alpha deficiency

Genetic defects in the pyruvate dehydrogenase complex are one of the most common causes of primary lactic acidosis in children. Most cases are caused by mutation in the E1-alpha subunit gene on the X chromosome. X-linked PDH deficiency is one of the few X-linked diseases in which a high proportion of heterozygous females manifest severe symptoms. The clinical spectrum of PDH deficiency is broad, ranging from fatal lactic acidosis in the newborn to chronic neurologic dysfunction with structural abnormalities in the central nervous system without systemic acidosis (Robinson et al., 1987; Brown et al., 1994). Genetic Heterogeneity of Pyruvate Dehydrogenase Complex Deficiency PDH deficiency can also be caused by mutation in other subunits of the PDH complex, including a form (PDHXD; 245349) caused by mutation in the component X gene (PDHX; 608769) on chromosome 11p13; a form (PDHBD; 614111) caused by mutation in the PDHB gene (179060) on chromosome 3p14; a form (PDHDD; 245348) caused by mutation in the DLAT gene (608770) on chromosome 11q23; a form (PDHPD; 608782) caused by mutation in the PDP1 gene (605993) on chromosome 8q22; and a form (PDHLD; 614462) caused by mutation in the LIAS gene (607031) on chromosome 4p14. [from OMIM]

MedGen UID:
326486
Concept ID:
C1839413
Disease or Syndrome
5.

Glutaric aciduria, type 1

The phenotypic spectrum of untreated glutaric acidemia type 1 (GA-1) ranges from the more common form (infantile-onset disease) to the less common form (later-onset disease – i.e., after age 6 years). Of note, the GA-1 phenotype can vary widely between untreated family members with the same genotype, primarily as a function of the age at which the first acute encephalopathic crisis occurred: three months to six years in infantile-onset GA-1 and after age six years in later-onset GA-1. Characteristically these crises result in acute bilateral striatal injury and subsequent complex movement disorders. In the era of newborn screening (NBS), the prompt initiation of treatment of asymptomatic infants detected by NBS means that most individuals who would have developed manifestations of either infantile-onset or later-onset GA-1 remain asymptomatic; however, they may be at increased risk for other manifestations (e.g., renal disease) that are becoming apparent as the understanding of the natural history of treated GA-1 continues to evolve. [from GeneReviews]

MedGen UID:
124337
Concept ID:
C0268595
Disease or Syndrome
6.

Pigmentary pallidal degeneration

Pantothenate kinase-associated neurodegeneration (PKAN) is a type of neurodegeneration with brain iron accumulation (NBIA). The phenotypic spectrum of PKAN includes classic PKAN and atypical PKAN. Classic PKAN is characterized by early-childhood onset of progressive dystonia, dysarthria, rigidity, and choreoathetosis. Pigmentary retinal degeneration is common. Atypical PKAN is characterized by later onset (age >10 years), prominent speech defects, psychiatric disturbances, and more gradual progression of disease. [from GeneReviews]

MedGen UID:
6708
Concept ID:
C0018523
Disease or Syndrome
7.

Dentatorubral-pallidoluysian atrophy

DRPLA (dentatorubral-pallidoluysian atrophy) is a progressive neurologic disorder characterized by five cardinal features (irrespective of the age of onset): ataxia, cognitive decline, myoclonus, chorea, epilepsy, and psychiatric manifestations. Onset ranges from infancy to late adulthood (range: age 0-72 years; mean: age 31.5 years). The clinical presentation varies by age of onset: individuals with juvenile onset (before age 20 years) have myoclonus, epilepsy, and progressive intellectual deterioration, whereas individuals with adult onset (after age 20 years) have ataxia, choreoathetosis, and dementia or neuropsychiatric changes. Disease duration is on average eight years (range: 0-35 years) and age at death is on average 49 years (range: age 18-80 years). [from GeneReviews]

MedGen UID:
155630
Concept ID:
C0751781
Disease or Syndrome
8.

6-Pyruvoyl-tetrahydrobiopterin synthase deficiency

Tetrahydrobiopterin (BH4)-deficient hyperphenylalaninemia (HPA) comprises a genetically heterogeneous group of progressive neurologic disorders caused by autosomal recessive mutations in the genes encoding enzymes involved in the synthesis or regeneration of BH4. BH4 is a cofactor for phenylalanine hydroxylase (PAH; 612349), tyrosine hydroxylase (TH; 191290) and tryptophan hydroxylase (TPH1; 191060), the latter 2 of which are involved in neurotransmitter synthesis. The BH4-deficient HPAs are characterized phenotypically by hyperphenylalaninemia, depletion of the neurotransmitters dopamine and serotonin, and progressive cognitive and motor deficits (Dudesek et al., 2001). HPABH4A, caused by mutations in the PTS gene, represents the most common cause of BH4-deficient hyperphenylalaninemia (Dudesek et al., 2001). Other forms of BH4-deficient HPA include HPABH4B (233910), caused by mutation in the GCH1 gene (600225), HPABH4C (261630), caused by mutation in the QDPR gene (612676), and HPABH4D (264070), caused by mutation in the PCBD1 gene (126090). Niederwieser et al. (1982) noted that about 1 to 3% of patients with hyperphenylalaninemia have one of these BH4-deficient forms. These disorders are clinically and genetically distinct from classic phenylketonuria (PKU; 261600), caused by mutation in the PAH gene. Two additional disorders associated with BH4 deficiency and neurologic symptoms do not have overt hyperphenylalaninemia as a feature: dopa-responsive dystonia (612716), caused by mutation in the SPR gene (182125), and autosomal dominant dopa-responsive dystonia (DYT5; 128230), caused by mutation in the GCH1 gene. Patients with these disorders may develop hyperphenylalaninemia when stressed. [from OMIM]

MedGen UID:
209234
Concept ID:
C0878676
Disease or Syndrome
9.

Dihydropteridine reductase deficiency

Infants with tetrahydrobiopterin deficiency appear normal at birth, but medical problems ranging from mild to severe become apparent over time. Signs and symptoms of this condition can include intellectual disability, progressive problems with development, movement disorders, difficulty swallowing, seizures, behavioral problems, and an inability to control body temperature.

Tetrahydrobiopterin deficiency is a rare disorder characterized by a shortage (deficiency) of a molecule called tetrahydrobiopterin or BH4. This condition alters the levels of several substances in the body, including phenylalanine. Phenylalanine is a building block of proteins (an amino acid) that is obtained through the diet. It is found in foods that contain protein and in some artificial sweeteners. High levels of phenylalanine are present from early infancy in people with untreated tetrahydrobiopterin deficiency. This condition also alters the levels of chemicals called neurotransmitters, which transmit signals between nerve cells in the brain. [from MedlinePlus Genetics]

MedGen UID:
75682
Concept ID:
C0268465
Disease or Syndrome
10.

Xeroderma pigmentosum group A

Xeroderma pigmentosum (XP) is characterized by: Acute sun sensitivity (severe sunburn with blistering, persistent erythema on minimal sun exposure) with marked freckle-like pigmentation of the face before age two years; Sunlight-induced ocular involvement (photophobia, severe keratitis, atrophy of the skin of the lids, ocular surface neoplasms); Greatly increased risk of sunlight-induced cutaneous neoplasms (basal cell carcinoma, squamous cell carcinoma, melanoma) within the first decade of life. Approximately 25% of affected individuals have neurologic manifestations (acquired microcephaly, diminished or absent deep tendon stretch reflexes, progressive sensorineural hearing loss, progressive cognitive impairment, and ataxia). The most common causes of death are skin cancer, neurologic degeneration, and internal cancer. The median age at death in persons with XP with neurodegeneration (29 years) was found to be younger than that in persons with XP without neurodegeneration (37 years). [from GeneReviews]

MedGen UID:
82775
Concept ID:
C0268135
Disease or Syndrome
11.

Encephalopathy due to GLUT1 deficiency

The phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS) is now known to be a continuum that includes the classic phenotype as well as paroxysmal exercise-induced dyskinesia and epilepsy (previously known as dystonia 18 [DYT18]) and paroxysmal choreoathetosis with spasticity (previously known as dystonia 9 [DYT9]), atypical childhood absence epilepsy, myoclonic astatic epilepsy, and paroxysmal non-epileptic findings including intermittent ataxia, choreoathetosis, dystonia, and alternating hemiplegia. The classic phenotype is characterized by infantile-onset seizures, delayed neurologic development, acquired microcephaly, and complex movement disorders. Seizures in classic early-onset Glut1 DS begin before age six months. Several seizure types occur: generalized tonic or clonic, focal, myoclonic, atypical absence, atonic, and unclassified. In some infants, apneic episodes and abnormal episodic eye-head movements similar to opsoclonus may precede the onset of seizures. The frequency, severity, and type of seizures vary among affected individuals and are not related to disease severity. Cognitive impairment, ranging from learning disabilities to severe intellectual disability, is typical. The complex movement disorder, characterized by ataxia, dystonia, and chorea, may occur in any combination and may be continuous, paroxysmal, or continual with fluctuations in severity influenced by environmental factors such as fasting or with infectious stress. Symptoms often improve substantially when a ketogenic diet is started. [from GeneReviews]

MedGen UID:
1645412
Concept ID:
C4551966
Disease or Syndrome
12.

Neuroferritinopathy

Neuroferritinopathy is an adult-onset progressive movement disorder characterized by chorea or dystonia and speech and swallowing deficits. The movement disorder typically affects one or two limbs and progresses to become more generalized within 20 years of disease onset. When present, asymmetry in the movement abnormalities remains throughout the course of the disorder. Most individuals develop a characteristic orofacial action-specific dystonia related to speech that leads to dysarthrophonia. Frontalis overactivity and orolingual dyskinesia are common. Cognitive deficits and behavioral issues become major problems with time. [from GeneReviews]

MedGen UID:
381211
Concept ID:
C1853578
Disease or Syndrome
13.

Childhood onset GLUT1 deficiency syndrome 2

The phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS) is now known to be a continuum that includes the classic phenotype as well as paroxysmal exercise-induced dyskinesia and epilepsy (previously known as dystonia 18 [DYT18]) and paroxysmal choreoathetosis with spasticity (previously known as dystonia 9 [DYT9]), atypical childhood absence epilepsy, myoclonic astatic epilepsy, and paroxysmal non-epileptic findings including intermittent ataxia, choreoathetosis, dystonia, and alternating hemiplegia. The classic phenotype is characterized by infantile-onset seizures, delayed neurologic development, acquired microcephaly, and complex movement disorders. Seizures in classic early-onset Glut1 DS begin before age six months. Several seizure types occur: generalized tonic or clonic, focal, myoclonic, atypical absence, atonic, and unclassified. In some infants, apneic episodes and abnormal episodic eye-head movements similar to opsoclonus may precede the onset of seizures. The frequency, severity, and type of seizures vary among affected individuals and are not related to disease severity. Cognitive impairment, ranging from learning disabilities to severe intellectual disability, is typical. The complex movement disorder, characterized by ataxia, dystonia, and chorea, may occur in any combination and may be continuous, paroxysmal, or continual with fluctuations in severity influenced by environmental factors such as fasting or with infectious stress. Symptoms often improve substantially when a ketogenic diet is started. [from GeneReviews]

MedGen UID:
330866
Concept ID:
C1842534
Disease or Syndrome
14.

Dopa-responsive dystonia due to sepiapterin reductase deficiency

The phenotypic spectrum of sepiapterin reductase deficiency (SRD), which ranges from significant motor and cognitive deficits to only minimal findings, has not been completely elucidated. Clinical features in the majority of affected individuals include motor and speech delay, axial hypotonia, dystonia, weakness, and oculogyric crises; symptoms show diurnal fluctuation and sleep benefit. Other common features include parkinsonian signs (tremor, bradykinesia, masked facies, rigidity), limb hypertonia, hyperreflexia, intellectual disability, psychiatric and/or behavioral abnormalities, autonomic dysfunction, and sleep disturbances (hypersomnolence, difficulty initiating or maintaining sleep, and drowsiness). Most affected individuals have nonspecific features in infancy including developmental delays and axial hypotonia; other features develop over time. [from GeneReviews]

MedGen UID:
120642
Concept ID:
C0268468
Disease or Syndrome
15.

Xeroderma pigmentosum, group D

Xeroderma pigmentosum (XP) is characterized by: Acute sun sensitivity (severe sunburn with blistering, persistent erythema on minimal sun exposure) with marked freckle-like pigmentation of the face before age two years; Sunlight-induced ocular involvement (photophobia, severe keratitis, atrophy of the skin of the lids, ocular surface neoplasms); Greatly increased risk of sunlight-induced cutaneous neoplasms (basal cell carcinoma, squamous cell carcinoma, melanoma) within the first decade of life. Approximately 25% of affected individuals have neurologic manifestations (acquired microcephaly, diminished or absent deep tendon stretch reflexes, progressive sensorineural hearing loss, progressive cognitive impairment, and ataxia). The most common causes of death are skin cancer, neurologic degeneration, and internal cancer. The median age at death in persons with XP with neurodegeneration (29 years) was found to be younger than that in persons with XP without neurodegeneration (37 years). [from GeneReviews]

MedGen UID:
75656
Concept ID:
C0268138
Disease or Syndrome
16.

Mitochondrial DNA depletion syndrome 13

FBXL4-related encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome is a multi-system disorder characterized primarily by congenital or early-onset lactic acidosis and growth failure, feeding difficulty, hypotonia, and developmental delay. Other neurologic manifestations can include seizures, movement disorders, ataxia, autonomic dysfunction, and stroke-like episodes. All affected individuals alive at the time they were reported (median age: 3.5 years) demonstrated significant developmental delay. Other findings can involve the heart (hypertrophic cardiomyopathy, congenital heart malformations, arrhythmias), liver (mildly elevated transaminases), eyes (cataract, strabismus, nystagmus, optic atrophy), hearing (sensorineural hearing loss), and bone marrow (neutropenia, lymphopenia). Survival varies; the median age of reported deaths was two years (range 2 days – 75 months), although surviving individuals as old as 36 years have been reported. To date FBXL4-related mtDNA depletion syndrome has been reported in 50 individuals. [from GeneReviews]

MedGen UID:
815922
Concept ID:
C3809592
Disease or Syndrome
17.

Woodhouse-Sakati syndrome

Virtually all individuals with Woodhouse-Sakati syndrome (WSS) have the endocrine findings of hypogonadism (evident at puberty) and progressive childhood-onset hair thinning that often progresses to alopecia totalis in adulthood. More than half of individuals have the neurologic findings of progressive extrapyramidal movements (dystonic spasms with dystonic posturing with dysarthria and dysphagia), moderate bilateral postlingual sensorineural hearing loss, and mild intellectual disability. To date, more than 40 families (including 33 with a molecularly confirmed diagnosis) with a total of 88 affected individuals have been reported in the literature. [from GeneReviews]

MedGen UID:
83337
Concept ID:
C0342286
Disease or Syndrome
18.

Dystonia 9

The phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS) is now known to be a continuum that includes the classic phenotype as well as paroxysmal exercise-induced dyskinesia and epilepsy (previously known as dystonia 18 [DYT18]) and paroxysmal choreoathetosis with spasticity (previously known as dystonia 9 [DYT9]), atypical childhood absence epilepsy, myoclonic astatic epilepsy, and paroxysmal non-epileptic findings including intermittent ataxia, choreoathetosis, dystonia, and alternating hemiplegia. The classic phenotype is characterized by infantile-onset seizures, delayed neurologic development, acquired microcephaly, and complex movement disorders. Seizures in classic early-onset Glut1 DS begin before age six months. Several seizure types occur: generalized tonic or clonic, focal, myoclonic, atypical absence, atonic, and unclassified. In some infants, apneic episodes and abnormal episodic eye-head movements similar to opsoclonus may precede the onset of seizures. The frequency, severity, and type of seizures vary among affected individuals and are not related to disease severity. Cognitive impairment, ranging from learning disabilities to severe intellectual disability, is typical. The complex movement disorder, characterized by ataxia, dystonia, and chorea, may occur in any combination and may be continuous, paroxysmal, or continual with fluctuations in severity influenced by environmental factors such as fasting or with infectious stress. Symptoms often improve substantially when a ketogenic diet is started. [from GeneReviews]

MedGen UID:
371427
Concept ID:
C1832855
Disease or Syndrome
19.

Alternating hemiplegia of childhood 2

ATP1A3-related disorder consists of heterogenous overlapping clinical findings that pertain to the four most common historically defined phenotypes: alternating hemiplegia of childhood (AHC); cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss (CAPOS) syndrome; relapsing encephalopathy with cerebellar ataxia (RECA) / fever-induced paroxysmal weakness and encephalopathy (FIPWE); and rapid-onset dystonia-parkinsonism (RDP). These phenotypes exist on a spectrum and should be regarded as classifications of convenience. AHC is characterized by onset prior to age 18 months of paroxysmal hemiplegic episodes, predominately involving the limbs and/or the whole body, lasting from minutes to hours to days (and sometimes weeks) with remission only during sleep, only to resume after awakening. Although paroxysmal episodic neurologic dysfunction predominates early in the disease course, with age increasingly persistent neurologic dysfunction predominates, including oculomotor apraxia and strabismus, dysarthria, speech and language delay, developmental delay, and impairment in social skills. Other system involvement may include cardiovascular (cardiac conduction abnormalities) and gastrointestinal (constipation, vomiting, anorexia, diarrhea, nausea, and abdominal pain) manifestations. CAPOS syndrome presents in infancy or childhood (usually ages 6 months to 5 years) with cerebellar ataxia during or after a fever. The acute febrile encephalopathy may include hypotonia, flaccidity, nystagmus, strabismus, dysarthria/anarthria, lethargy, loss of consciousness, and even coma. Usually, considerable recovery occurs within days to weeks; however, persistence of some degree of ataxia and other manifestations is typical. RECA/FIPWE primarily presents with fever-induced episodes (infancy to age 5 years); however, first episodes can occur occasionally in young adults during illnesses such as mononucleosis. Recurrent fever-induced episodes may be ataxia-dominated RECA-like motor manifestations or FIPWE-like non-motor manifestations (encephalopathy) and can vary among affected individuals. Notably, RECA-like and FIPWE-like manifestations can occur in the same individual in different episodes. In some individuals episodes seem to decrease in frequency and severity over time, whereas others might experience worsening of manifestations. RDP presents in individuals ages 18 months to 60 years and older with dystonia that is typically of abrupt onset over hours to several weeks, though some individuals report gradual onset over the course of months. A stress-related trigger is identifiable in up to 75% of individuals. Dystonia rarely improves significantly after onset; some individuals report mild improvement over time, whereas others can experience subsequent episodes of abrupt worsening months to years after onset. Limbs are usually the first to be affected, although by the time of diagnosis – typically many years after onset – individuals most commonly display a bulbar-predominant generalized dystonia. Exceptions are common and a rostrocaudal gradient is rare rather than typical. Migraines and seizures are also observed. [from GeneReviews]

MedGen UID:
766702
Concept ID:
C3553788
Disease or Syndrome
20.

Deficiency of aromatic-L-amino-acid decarboxylase

Individuals with aromatic L-amino acid decarboxylase (AADC) deficiency typically have complex symptoms, including motor, behavioral, cognitive, and autonomic findings. Symptom onset is in early infancy, typically within the first six months of life. The most common initial symptoms are often nonspecific, and include feeding difficulties, hypotonia, and developmental delay. More specific symptoms include oculogyric crises (which occur in the vast majority of affected individuals, typically starting in infancy), movement disorders (especially dystonia), and autonomic dysfunction (excessive sweating, temperature instability, ptosis, nasal congestion, hypoglycemic episodes). Sleep disturbance is present in a majority of affected individuals and can include insomnia, hypersomnia, or both. Mood disturbance, including irritability and anxiety, are also common. Brain MRI is typically either normal or may demonstrate nonspecific abnormalities, such as mild diffuse cerebral atrophy or delayed myelination. Seizures are an uncommon finding, occurring in fewer than 5% of affected individuals. [from GeneReviews]

MedGen UID:
220945
Concept ID:
C1291564
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity